Robots That Learn Language: A Developmental Approach to Situated Human-Robot Conversations
نویسندگان
چکیده
Recent progress in sensor technologies and in an infrastructure for ubiquitous computing has enabled robots to sense physical environments as well as the behaviour of users. In the near future, robots that change their behaviour in response to the situation in order to support human activities in everyday life will be increasingly common, so they should feature personally situated multimodal interfaces. One of the essential features of such interfaces is the ability of the robot to share experiences with the user in the physical world. This ability should be considered in terms of spoken language communication, which is one of the most natural interfaces. The process of human communication is based on certain beliefs shared by those communicating (Sperber & Wilson, 1995). Language is one such shared belief and is used to convey meaning based on its relevance to other shared beliefs. These shared beliefs are formed through interaction with the environment and other people, and the meaning of utterances is embedded in such shared experiences. From this viewpoint, spoken language interfaces are important not only because they enable handsfree interaction but also because of the nature of language, which inherently conveys meaning based on shared experiences. For people to take advantage of such interfaces, language processing methods must make it possible to reflect shared experiences. However, existing language processing methods, which are characterized by fixed linguistic knowledge, do not make this possible (Allen et al., 2001). In these methods, information is represented and processed by symbols whose meaning has been predefined by the machines' developers. In most cases, the meaning of each symbol is defined by its relationship to other symbols and is not connected to perception or to the physical world. The precise nature of experiences shared by a user and a machine, however, depends on the situation. Because it is impossible to prepare symbols for all possible situations in advance, machines cannot appropriately express and interpret experiences in dynamically changing situations. As a result, users and machines fail to interact in a way that accurately reflects shared experiences. To overcome this problem and achieve natural linguistic communication between humans and machines, we should use methods that satisfy the following requirements.
منابع مشابه
Robots that Learn to Communicate: A Developmental Approach to Personally and Physically Situated Human-Robot Conversations
This paper summarizes the online machine learning method LCore, which enables robots to learn to communicate with users from scratch through verbal and behavioral interaction in the physical world. LCore combines speech, visual, and tactile information obtained through the interaction, and enables robots to learn beliefs regarding speech units, words, the concepts of objects, motions, grammar, ...
متن کاملDevelopmental Robots: Theory, Method and Experimental Results
It is very challenging for humans to program a humanoid robot to act properly in human environment. Humans have a fundamental limitation in constructing an adequate model for the world or an adequate behavior model for the robot, because of the complexity of such models and the unpredictable unknown environments that the models must apply. This article introduces a new approach to intelligent r...
متن کاملA density based clustering approach to distinguish between web robot and human requests to a web server
Today world's dependence on the Internet and the emerging of Web 2.0 applications is significantly increasing the requirement of web robots crawling the sites to support services and technologies. Regardless of the advantages of robots, they may occupy the bandwidth and reduce the performance of web servers. Despite a variety of researches, there is no accurate method for classifying huge data ...
متن کاملIntroduction to the Special Issue on Dialog with Robots
WINTER 2011 15 For decades, people have reflected with whimsy and imagination upon the possibility of one day conversing with robotic systems in a natural manner as part of fluid, ongoing coordination with them. Research on computational models and mechanisms for supporting spoken dialogue dates back to the earliest days of AI research, including Alan Turing’s reflection about how machine intel...
متن کاملA Framework for Learning and Control in Intelligent Humanoid Robots
Future application areas for humanoid robots range from the household, to agriculture, to the military, and to the exploration of space. Service applications such as these must address a changing, unstructured environment, a collaboration with human clients, and the integration of manual dexterity and mobility. Control frameworks for service-oriented humanoid robots must, therefore, accommodate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008